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Abstract

Eighteen subjects (ages 18-35) underwent event-related functional magnetic resonance imaging (¢fMRI) while performing a delayed-
‘match-to-sample (DMS) task before and immediately after 48 h of sustained wakefulness. The DMS trial events were: a 3-8 study period of
either a one-, three-, or six-letter visual array; a 7-s retention interval; and a 3-s probe period, where a button press indicated whether the
probe letter was in the study array. Ordinal Trend Canonical Variates Analysts (OrT CVA) was applied to the data from the probe period for
irials with six-letter study lists prior to and immediately following sleep deprivation to find an activation pattern whose expression decreased
with sleep deprivation in as many subjects as possible, while being present i both conditions. The first principal component of the OrT
analysis identitied a covariance pattern whose expression decreased as a function of sleep deprivation in 17 of 18 subjects (p<0.001). While:
overall expression of the pattern showed a systematic decrease with sleep deprivation, the brain regions that make up the pattern show
covarying increases and decreases in activation. Regions that decreased their activation were noted in the parietal (BA 7 and 40). temporal
(BA 37, 38 and 39) and occipital (BA 18 and 19) lobes; regions that increased their activation were noted in the cerebellum, basal ganglia,
thalamus and the anterior cingulate gyrus (BA 32). The reduction in pattern expression with slcep deprivation for each subject was rclated to
the change in performance on the DMS task. Subject decreases in pattemn expression were correlated with reductions in rccognition accuracy
(p <0.05). increased intra-individual variability in reaction tine ( p <0.005) and increased lapsing (p <0.003).
© 2003 Elsevier B.V. All rights rescrved. | ' - *
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1. Introduction o behavior has been a topic of study for over a century, only
| recently have technological innovations allowed investiga-

The brain consists of a set of functionally distinct regions, tion of the changes to the human brain before and during
yet, these regions are also interconnected to form functional sleep 'depriva-t‘ion that may underlie those behavioral
networks. While the profound effects of sleep deprivation on changes. Among those studies that have approached this

critical issue, the emphasis has been on identifying individ-
ual brain areas affected by sleep deprivation. In the study

* Corresponding author. Cognitive Neuroscience Division of the Taub reported here, we seek to identify changes to pre—existing,
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- E-mail address: ys1i@columbia.edu (Y. Stern). have chosen to examine changes to the MR signal before and
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during profound sleep deprivation obtained while subjects
perform a speeded short-term memory task descended from
the Sternberg paradigm. In addition to basic visual, motor
and short-term memory function, this paradigm also pro-
vides an internal manipulation of difficulty useful in address-
ing the spectficity of the observed brain networks.

Sleep deprivation significantly impacts human function-
ing [37], negatively affecting levels of alertness and cogni-
tive performance [25,45]. It has been demonstrated that
sleep-deprived individuals experience increased reaction
times and reduced vigilance relative to those with normal
sleeping patterns [2,3,26,28.30,45]. -

The behavioral effects of sleep deprivation in speeded
response tasks can be integrated under a general umbrella of
phenomena observed for sleep deprivation which was
revicwed comprehensively by Dinges and Kribbs [13]. This
framework 1nvolves five key concepts that represent inde-
pendent aspects: (1) cognitive slowing, (2) lapsing, (3)
memory effects, (4) time-on-task effects and (5) optimum-
response shifts. It appears that these five phenomena can
account for many of the performance decrements to varying
degrees, depending on the characteristics of the cognitive
task under study. This contrasts with earlier, neuropsycho-
logically inspired, theories that posit sleep deprivation
effects on specific higher cognitive function similar to the
effects of lesions [13]. ' |

In addition to behavioral studies, an increasing number of
neuroimaging studies have recently investigated the effects

 of sleep deprivation. Changes in cercbral blood flow may .

rclate to the cognitive deficits obscrved during sleep depri-
vation [16.27]. Neuroimaging studies, using positron ¢cmis-
sion topography (PET) [45,47] or functional magnetic

resonance imaging (fMRI) [16], have shown that changes

in cercbral activation occur as a function of sleep depriva-
tion, and that these changes are associated with changes in
cognitive performance. Significant decreases in overall glu-

cose metabolism tollowing 32 h of sleep deprivation were.

first reported in 1991 [47]. Since then, significant decreases
'in overall glucose metabolism following 24 h of sleep
deprivation [45] were also observed during performance of
a serial subtraction task and shown to correlate with declines
in performance. Decreases tn regional glucose activity have
been observed primarily in the thalamus [45,47], temporal
[47], prefrontal and parietal cortices [45].

Using fMRI on the other hand, Drummond et al. [16]
reported an increase in cerebral activation of the bilateral
prefrontal cortex (LPFC) and parietal lobes following 35 h of
sleep deprivation. Further, less impairment on a divided
attention task, involving both a verbal learning and an
arithmetic task, was associated with greater activation of
‘the left inferior parietal/superior temporal gyri and the right
inferior parietal gyri. On a verbal learning task, greater

actrvation of the bilateral parietal lobe was associated with

better task performance {15].
All of the imaging studies mentioned before used uni-
variate region-by-region analyses, paying tribute to the well-

documented functional segregation in the brain and implhic-
itly adopting the lesion model of sleep deprivation. Instead,
we wanted to perform a complementary analysts and cap-
ture the well-characterized global deficits of sleep depriva-
tion mentioned in the previous paragraph, rcasoning that

they might result in changes in activation in-a network of

more widely distributed brain regions, in addition to focal
deficits. For identifying a set of brain regions whose
covarying changes in activation could account for the
observed performance deficits, we had to use a multivariate
analysis technique, rather than analyzing the brain activation
on a region-by-region basis. |
Event-related functional magnetic resonance imaging
(efMRI) data were used in order to establish neural corre-
lates of the observed performance decrements. We adopted a
delayed-match-to-sample (DMS) task that was a variant of
the Sternberg memory-scanning task for our study of sleep
deprivation. This short-term memory task offers a manipu-
lation of difficulty in terms of memory load and allows
precise chronometric information on subjects’ performance.
Our version of the task contains an encoding phase (stim-
ulus), rehearsal phase (retention) and a retrieval phase
(probe). This short-term memory task has been studied
extensively inside and outside the scanner (e.g., Refs.
[39.41,43,44]), i1s easy to administer and taps a set of
cognitive component processes (pertaining to visual encod-

“ing, rehearsal, memory scanning, binary decision, response

selection and motor output). We set out to investigate which
ones of these component processes might stay relatively
intact, and which oncs might be affected adversely by sleep
deprivation. Of particular intercst to us was the probe phase
of the task, which involved memory scanning, binary
decision, response selection and motor output processes.
Furthermore, there is a practical reason why the probe
phase is best suited for the analysis of the effects of sleep
deprivation. Sleep deprivation causes subjects to lapse and

- miss the deadline for responses during the probe phase.

Event-related fMRI data from such non-response trials are
excluded for further analysis. The probe period is the task
component where responses and non-responses have the
most predictive power and are therefore best suitable for
ascertaining whether subjects actually performed the task
(which becomes important after 48 h of sustained waketul-
ness). During the stimulus and the retention phase on the
other hand, there is a greater possibility of misclassification:
If subjects paid attention during the stimulus phase, re-
hearsed the items during the retention phase, but failed to
make a response in the probe phase, the trial would be lost-
activation that should have been included from the point of
view of the stimulus and retention phase would be thrown
out. This is also why we were primarily interested in the
extent to which changes in neural activation during the
probe phase resulted from sleep deprivation and could be

related to worsening task perforinance.

DMS tasks have been studied extensively in recent years,
and the advances in event-related imaging techniques facil-
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itated the separation of the different cognitive processes
involved in task performance into different temporal compo-
nents [12,39,42]. Of particular interest is the role of the LPFC
and its rclation to the number of items that have to be retained
in the task (memory load). A recent event-related study [42]

- of a DMS task with serial presentation of one to eight letters

found decreasing activation in the ventral portion of the
LPFC (BA 44,45.47) with increasing memory load during
encoding, whereas the dorsal portion of the LPFC (BA 9.,46)
displays increasing activation with increasing memory load
~during encoding. Consistent with this finding is the different
role of ventral and dorsal portions of the LPFC: Dorsal LPFC
becomes involved once the quantity of the to-be-remembered
information exceeds the working-memory capacity limit of
“4 x| atems” [10], necessitating executive “chunking”
processes to encode information successfully. Presumably,
the ventral portion of the LPFC, which is geared towards
maintenance and rehearsal processes at below-capacity lev-

els, would then decrease its involvement. For the probe

period, a recent study [42] found load-dependent modulation
1n the activation of both dorsal and ventral LPFC. This load-
dependent activation was also beneficial for task-perfor-
mance, t.€., the more subjects activated dorsal LPFC during

the probe period in a load-dependent manner, the more

accurately they classified the probe letter. On the other hand,
overall activation (regardless of memory load) in the LPFC
was lower for subjects that performed faster and more
~accurately.

Because of the pivotal role of the prefrontal cortex in
short-tcrm memory tasks, it has also figured prominently in
the cxtant literaturc on sleep-deprivation with at timcs
contradictory findings: Of the studies mentioned earlier,

two [15,16] reported increased PFC activation as a result

of sleep loss, whereas two other studies [14.45) reported
decreased PFC activation. Studies {14—16} used 35 h of
sleep deprivation, while {45] used 24 h. The different
response of the prefrontal cortex to sleep deprivation there-
fore could anse either from the difference in the cognitive
tasks used and the additional attentional demands exerted by
the dual-task situation, or by the difference in the degree of

sleep deprivation. Another possible confound might be

prescnted by circadian effects as the amount of slecp
deprivation incurred by subjects in the two types of studies
was not an mnteger multiple of 24 h and testing occurred at
different times of day {2,3,35]. This makes comparison
across studies difficult, even when the studies mdmdually
used adequate controls.

On the basis of these findings it is difficult to cast a
hypothesrs of (1) how the LPFC responds to sleep depriva-
tion and (2) whether this response is beneficial or detrimen-
tal to performance in our DMS task. We therefore chose to
expand on these results with a multivariate approach that
- pays attention to individual differences in regional MR
signal covarlance. Multivariate approaches can disambigu-
ate different influences (in our case: sleep deprivation and
memory load) that might be acting simultancously on a

brain region by utilizing covariation of activation with that
of other brain regions. |

In addition, our method demands a consistent sleep-
deprivation-induced change in brain activation in a distrib-
uted sct of brain regions for as many subjcct as possible,
rather than just allowing a mean change that could be caused

- by overly influential subjects. We specifically searched for

an activation pattern common to both PRE and POST
conditions, with a decrease in expression from PRE to
POST for as many subjects as possible.

2. Methods

Eighteen healthy subjects, between the ages of 20 and 35
years (age=26.3+4.9 years), participated in an efMRI
paradigm of a DMS task. The mitial scan occurred at 9
AM (PRE), and the follow-up scan occurred at the same
time 48 h later (POST) to ehiminate confounding circadian
effects, yielding 48 h of prolonged wakefulness. All subjects
were right-handed and carefully screened to ensure that they
had no history of medical, psychiatric, neurological or sleep
disorder. Subjects maintained a sleep log for 2 weeks prior -
to study; the average amount of sleep per subject and per
day was 8.00 h. Mean within-subjects variability across the
14 days prior to the experiment gave a mean standard
deviation ot 0.95 h. One subject slept 6 h on both nights
preceding the experiment, while the rest slept more than 6
h on both these nights. We examined whether the within-
subjects means and STD correlated with any of the pertor-
mance variables or ncural activation to be discussed below,
and obtained no significant findings. |

Subjects were instructed to stop drinking caffeine 24
h prior to study participation and for the duration of the
study. All subjects passed substance abuse screening tests.
Subjects were supervised at all times, and polysomno-
graphic monitoring confirmed that they remamed awake
during the sleep deprivation perlod |

Fourteen control subjects (age 23.93 + 1.14) undarwcnt
the same protocol without being sleep deprived. Apart from
one exception, the control subjects also maintained a sleep

log for 2 weeks prior to the study. The average amount of

sleep per subject was 7.96 h, and the mcan within-subjects
standard deviation of 1.08 h. Of the 13 subjects who handed
in their sleep logs, 12 had at least 6 h of sleep on both nights
prior to the expertment. -

Informed consent, as approved by the Internal Review

 Board of the College of Physicians and Surgeons of Co-

lumbia University, was obtared prior to study participation
and after the nature and risks of the study were explained.

Subjects were paid for therr participation in the study.

2.1. Delaved-match-to-sample task

The DMS task was a variant of the Sternberg task
[43,44]. A tnal lasted a total 16 s. Subjects were instructed
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to respond as accurately as possible. No feedback about
their performance was given. The sequence of trial events
was as follows (Fig. 1): First, a fixed 3-s period of blank
presentation marked the beginning of trial; then, during the
stimulus period of the task, an array of one, three or six
capital letters were presented for 3 s (stimulus phase).
With the offset of the visual stimulus, subjects were
instructed to focus on the blank screen and hold the stimulus
items in mind for a 7-s maintenance interval (retention
phase). Finally, a probe appeared for 3 s (probe phase),
which was a lowercase letter centered in the field of view. In
response to the probe, subjects indicated by a button press

whether or not the probe matched a letter in study array.

(Left index finger indicated “Yes”, right index finger
indicated ““No™.) _

Each experimental block contained 10 trials for cach of
three set sizes with five true negative and five true positive

probes per set size. Three experimental blocks were run in

total, yielding 10 X 3 X 3=90 experimental trials per scan-
ning session. In addition to the fixed 3-s period of a blank
screen presentation, which we counted as part of the
experimental trial, there were inter-trial intervals (ITI) that
consisted of presentation of a blank screen and were used as
baseline epochs in the time series analysis of the subject’s
data. Their length was variable and determined in the
following way: Seventy 2-s increments were available
throughout the whole block for 30 inter-trial intervals. It
was decided probabilistically whether a 2-s increment of IT]
would be inserted prior to the start of the trial, or whether
-the trial would begin immediately. The probabilitics for
choosing between additional [T! increments or startimy the
experimental trial were updated according to a sampling-

without-replacement rule: For example, at the start of the
experimental block, the probabilitics for choosing a 2-s [TI
increment versus starting the experimental trial were 70/100

versus 30/100. If a 2-s ITI increment was chosen, these
- probabilities would be updated to 69/99 versus 30/99 for the
decision of adding another ITI increment versus starting the

trials. This sampling rule keeps the overall time assigned to
ITI constant at 70 X 2= 140 s per block. With 30 trials of 16

s each, each block therefore lasted for 140+(30 % 16) =620

s. There were two breaks of approximately a minute each
between blocks 1 and 2 as well as blocks 2 and 3. This
makes the overall time subjects spent.in the scanner during
each session (3 X 620)+120=1980 s, or 33 min.
Subjects as well as controls went through a training run
of seven blocks on the evening prior to the start of the
experiment, the first six of which were administered with

feedback. The training session was conducted to climinate

confounding effects from learning through repeating the
performance of the DMS task.

2.2. fIMRI acquisition and processing

Functional images were acquired using a 1.5-T magnetic
resonance scanner (Philips). A gradient echo EPI sequence
[TE=50 ms; TR=3 s; flip angle=90°] and a standard
quadrature head coil was used to acquire T2*-weighted
images with an in-plane resolution of 3.124 X 3.124 mm
(64 X 64 matrix; 20 cm- field of view). Based on T,
“scout” images, 8-mm transaxial slices (15-17) were
acquired. Following the fMRI runs, a high (in-planc) reso-
lution T» image at the same slice locations used in the tIMRI
run was acquirea-using a tast spin—echo sequence [TE = 100

The Delayed Match-to-Sample
‘Task (Sternberg Variant)

Stimulus (3 SE(;)

1Tl (2-140 sec)

Either Set-Size 1

Or Set-Size 6

Q AK
+

YRP

Pmbe (3 sec)

Retention (7 sec)

Either a
True_ Positive

Or a
True Negative

- Time In Trial

Fig. 1. Schematic sketch of delayed-match-to-sample paradigm of the Sternberg vanant.
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ms; TR=3 s; 256 X 256 matrix; 20 cm” field of view]. Task
administration and data collection will be controlled by a

computer running appropriate softwarc (Psyscope 1.1), and.

clectronically synchronized with the MR scanncr. Task
stimuli are back-projected onto a screen located at the foot
of the MRI bed using an LCD projector. Subjects view the
screen via a mirror system located in the head coil. Task
responses are made on a LUMItouch response system and
behavioral response data is recorded on the task computer.
~ All image processing and analysis was done using the
SPM99 program (Wellcome Department of Cognitive Neu-
‘rology) and other code written 1n Matlab 5.3 (Mathworks,

Natick, MA). fMRI time series were corrected for order of

slice acquisition. All functional volumes in a given subject
were realigned to the first volume from the first run ot each
study. The T» anatomical image was then co-registered to
the first functional volume, using the mutual information
co-registration algorithm implemented in SPM99. This co-
registered structural mmage was then used in determining
non-linear spatial normalization (7 X § X 7 nonlinear basis
functions) parameters for a transformation into a Talairach
standard space defined by the Montreal Neurological
[Institute template brain applied with SPM99. These nor-

malization parameters were then applied to the functional

data (using SINC-interpolation to reslice the images to
2 X2 X2 mm). |

2.3. Data analysis

The fMRI responses to the thrce separate temporal
components of the task, in each cxperimental condition
and in each block, were fit to separate sets of predictor
variables [48]. The predictor variables that were ultimately
used in the first-level model estimation were obtained 1n the
following way: a constant intercept (zeroth-order discrete
cosine set) was chosen for the stimulus and probe phases,
whereas a zeroth- to second-order discrete cosine set was
chosen for the retention phase. For one block this results 1n
five predictor variables (one for stimulus, three for retention,
one for probe) per set size (1, 3 and 6) per probe type
(positive or negative). An additional intercept term is
provided for the cffect of block, bringing the total number
of predictor variables per block to (5 X3 xX2)+1=13].

Predictor variables had a non-zero value at every point in

the time scrics where a particular condition was met, and a
zero value at every other point. For example, one predictor
had a value of one during all stimulus phases of set size one,
with a positive probe, during the first block.

The set was convolved with a canonical hemodynamlc
response waveform (a sum of two gamma functions, as
specified in the SPM99 program [19]) whose beginnings
were marked by the appropriate onset vector for each epoch,
set size and probe type. The resulting time series vectors
were used in the design matrix for the within-subjects model
estimation. The final matrix had 3 X 3 block-diagonal form.

The number of rows was the total number of volumes

denoting the complete fMRI time series across the scanning
scssion. The number of columns was 3 X 31=93; 31 design
vectors for cach experimental block as explained above.
The band-pass filtered (low pass by a Gaussian with a
FWHM of4 s and a high pass cutoff of 14.5 mHz) ftMRI tune
series at each voxel were regressed onto these predictor
variables. A first-order autoregressive autocorrelation model
was fit to the residuals to make statistical inference more
robust to the intrinsic temporal autocorrelation structure {20].
At every voxel in the image, contrasts assessed - the
amplitudes (normalized regression coefticients) of the com-
ponents of the event-related responses that matched the
canonical hemodynamic response waveform for the whole

scanning session. A typical contrast used in our analysis for

instance would be “‘activity-during the probe phase for six
items collapsed across probe types and experimental blocks
versus activity in the IT1 blank-period”. This method of
time-series modeling and contrast estimation at each voxel
reduces the number of images to one per subject per
condition. To account for gain differences between tMRI
sessions, activation values were normalized by their voxel
averages. The resulting parametric maps 1mages were
smoothed using an isotropic Gaussian kernel (FWHM =8
min) and used as the data in the subsequent analysis. They
contained 115 resolution elements as indicated by SPMY9.
These parametric maps serve as the dependent variables tor
the subsequent population-level multivaniate analysis.

2.4. Multivariate analysis

Ordinal Trend Canonical Variates Analysis (OrT CVA)
[22--24] was performred on the data. This analysis 1s similar
to other regional covariance analyses techniques, notably
Partial Least Squares, to the extent that it applies principal
components analysis (PCA) to the data matrix that 1s trans-
formed using a matrix representing the experimental design
[1.32,46]. OrT CVA was designed to identify a covariance
pattern in the MR signal utilizing each voxel, the expression

~ of which decreases tor as many subjects as p0531ble from

PRE to POST sleep deprivation. |
It is important to stress the dlffert,nce between our and

other multivariate techniques: The latter might armve at
several covariance patterns—one per condition—by analyz-
ing the across-subjects variances scparately for cach condi-
tion. These analyses usually establish ditferences between
task conditions concerning: (1) the brain areas involved, i.e.,
brain area X’s activation might account for a lot of the
variance in task condition 1, but not play a significant role 1n

task condition 2, and vice versa; (2) a changing strength of

the correlation between brain areas that are involved in both

tasks, i.e., brain areas X and Y show a correlation in their

activation across subjects of' R = 0.8 during task condition 1,
but this correlation reduces and switches directionality to

R=—0.1 during task condition 2.
Rather than examining differences 1n functional connec-

tivity between conditions, we were interested in changes in
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regional activation induced by sleep deprivation that keep
the functional conncctivity unchanged from PRE to POST,
and could therefore be captured in onc covariance pattermn. In
our case, a single covariance pattern represents sct of brain
rcgions the connections of which are not changing from
- PRE to POST. Rather, subject expression of the covariance
pattern varies from subject to subject with the additional
constraint of a decrease from PRE to POST for as many
subjects as possible. This means that most people are
showing the same mutually correlated regional activation
and de-activation in response to sleep deprivation, with
individual difterences in the degree of these changes.

The property of a systematic within-subjects change of
pattern expression across task conditions (beyond mere
mean trends) is called an “ordinal trend’. The number of
subjects who violate the rule of decreasing expression from
'PRE to POST can be used as a statistic to test the null
hypothesis of the absence of an ordinal trend in the data
[22]. Monte Carlo simulations of regional noise that 1s
independently and identically distributed according to a
Gaussian generate the p level for the value of the number-
of-exception criterion observed in our subject sample. For
these simulations we used 18 subjects and 115 regional
resolution elements in accordance with our éxpernmental
parameters. A significant ordinal trend lends additional
credence to the claim that an activation pattern was obtained
through the experimental design manipulation (=sleep
‘deprivation in this case), rather than a significant change

on the mean across conditions that might have come about

as a result of overly influcntial subject outliers.

Activation patterns resulting from muitivariate analysis
assign different weights to all voxels included in the
~analysis, depending on the salience of their covariance
contribution. Voxel weights that are positive indicate a
positive correlation between the subject expression value
and the associated regional activation, whereas negative
weights indicate a negative comelation. This means that as
the expression of a pattern increases, activation in the
positively weighted regions increases as well, whereas

activation in the negatively weighted regions decreases.

The absolute magnitude of a regional weight determines
the slope of this change: for instance, a regton whose weight
Is twice is large as that of another also changes its activation
twice as steeply. Whether a voxel weight 1s rcliably different
from zcro 1s assessed by a bootstrap estimation procedure
[ 17]. Denoting the point estimate of a voxel weight as w and
the standard deviation resulting from the bootstrap resam-
pling procedure as s,,, we can assigned an inverse coetficient
of variation (ICV) according to ICV =w/s,. Sufhiciently
small variability of a voxel weight around its point estimate
value in the resampling processes results in an [CV value of
large magnitude and indicates a reliable contribution to the

covariance pattern. As the threshold criterion, we chose

IICV|>3.5; under the  assumptions of a standard-normal
distribution, this corresponds to a one-tailed probability of
0.0002. If we take the number of resolution clements that

characterizes the .dcgree of spatial correlation caused by the
smoothing process in our data analysis (= [15) the true p
valuec would be 0.0002 x 115=0.0268. The effects induced

by slecp deprivation described in the Results are thercfore

strong cnough to survive a multiple-comparison correction.

Individual subject’s expression of the activation pattern
during the PRE and POST sessions is quantified with the
subject-scaling factor (SSF). The SSF is obtained by the
operation of an inner product (=covariance across brain
regions) between the covariance pattern in question and a
subject’s task scan.' It quantifies to what extent a subject
expresses the activation pattern in a task scan with a single
number, which can be used for further analysis. Change in
pattern expression for each subject as a function of sleep
deprivation was measured by the PRE-POST difference of
that subjcct’s SSFs. | |

Once an activation pattern was identified that systcmat-
ically decreased in expression as a function of sleep depri-
vation, we examined the correlation between individual
change in network expression from PRE to POST sleep
deprivation and change in their scores on the task perfor-
Imance measures. |

3. Results
3.1. Behavioral performance

In addition to rccognition accuracy and (within-subjects)
mean reaction times, which are both commonly used to
characterize the DMS-task performance. we also included
(within-subjects) reaction time variability (standard devia-
tion) and the rate of non-responses (for which subjects failed
to respond in the allotted 3-s window during the probe
period) in our behavioral outcome measures. This was
prompted by the observation that subjects showed increased
intra-individual variability in their reaction times as well as
markedly increased non-response rates a function of sleep
deprivation. | o

We subjected all four behavioral variables to-a two-way
ANOVA with sleep deprivation status, set size of stimulus
and an intcraction term as within-subjects factors. For the
mean reaction times we found an effect of sleep deprivation
(F(1,17)=42.23, p<0.0001), an effect of set sizc (F(2,
34)=44.49, p<0.0001), but no interaction between the two
(F(2,34)=0.78, p=0.47). For the STD of the reaction times,
we found an effect of sleep deprivation (F(1,17)=60.8%,
p <0:0001), no effect of set size (F(2,34)=1.66, p=0.20),

but a significant interaction ( F(2,34) =3.48, p<0.05). Look-

' For people who like to think in geometrical tenms, the following
analogies might be easier to understand: the activation pattern 1s a vector
(v)) in an N-dimensional vector space (V= number of brain regions) with
Euclidean norm=1. An individual task scan is another vector in this -
dimensional space (v»). The subject expression is the dot product
hetween the two vectors, vy-v5. and can be interpreted as the pmjcctiun_
of v, along . | |
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subjects: 17 of 18 subjects decreased their expression of the activation pattern (
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Control subjects

* L

-
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resulting from the Ordinal Trend Canonical Variates Analysis. (Left) Sleep deprivation
p<0.001) as the result of sleep deprivation. (Right) Forward application of the

slcep-deprivation patiern to control subjects: No systematic decrease was observed. and four people increased their expression of the covarsance pattern

(p=0.18).

ing at the post hoc contrasts morc carcfully reveals that this
intcraction is due to a bigger slecp-deprivation-induced

difference of the STD values for three stimulus items than

for one or six stimulus items. For the recognition accuracy, we
found an effect of sleep deprivation (F(1,17)=16.6,

p<0.005), but no effect of set size (F(2,34)= .31,

p=0.29), and no interaction (F(2,34)=0.11, p=0.89). We
also looked at the overall non-response rate as a function of
sleep deprivation and set size and obtained an eftect of sleep

deprivation ( F(1.17)=59.69,p < 0.0001), but no effect of set

size (F(2.34)= 1.43, p=0.25). and no interaction ( F(2,
34)=1.65,p=021).

Since the set-size 6 condition is the one used to generate

the activation pattcrns 1n the OrT CVA, the behavioral
variables that pertain to a stimulus array size of six items
are of special interest. On the first day of the study, prior to
any sleep deprivation, recognition accuracy was near
ceiling (96.5 *+ 3.8%). Within-subjects mean reaction time
was 1190+ 198 ms. Intra-individual variability (STD
within subject) was 347 £ 115 ms. The fraction of non-

responses (when subjects exceeded the 3-s deadline) was
“very low at 0.03+0.10%. There was a negative effect of
sleep deprivation on performance. On day 2 of the study,

after 48 h of sleep deprivation, recognition accuracy was
reduced and more variable across subjects (82.6 = 17.0%),
mean reaction time was increased (1486 + 296 ms), ntra-
individual reaction time variability was increased (557 &
141 ms), and the fraction of non-responses was increased

(30.11 £18.74%). All mecasurcs show highly significant -

differences as a function of sleep deprivation in paired-
sample ¢ tests (17 degrees of freedom), yielding onc-tailed
p values <0.001. o

3.2. fMRI data

For the purposes of the MR image analysis, our exper-
iment contained two design parameters: sleep deprivation
status (PRE/POST) and memory load (one, three or six
items). Motivated by the observation that the behavioral

variables in our experiment did not show any recliable
interaction-effect between these two factors, we hypothce-

sized that the effects of those two factors on ncural activa-

tion patterns during retrieval would also be non-interacting.
Furthermore, regardless of an interaction, we reasoned that
the effects of sleep deprivation on the neural activation
patterns would be stronger than the effect of memory load,
causing us to focus primarily on the effects of sleep
deprivation. In order to allow for a possible interaction,
however, we did not collapse our analysis across different
memory loads, but decided to identity sleep-deprivation-
induced changes at the most demanding load level.”

We therefore subjected only the data from the probe
phase*for six stimulus items to an Ordinal Trend Analysis.”
The fMRI data from non-responsc-trials were excluded from
any further analysis. The first principal component of the
OrT CVA (accounting for 30% of the variance) displayed
ordinal trend properties. Seventeen of 18 subjects decreased
their pattern expression (p <0.001; see Fig. 2), suggesting
an unambiguous neural correlate of sleep deprivation. Be-
cause the well-rested scans always preceded the scans
immediately following sleep deprivation, we verified further

that the activation differences associated with this pattern

were due to sleep deprivation only, and not due to an order
effect. We applied the sleep-deprivation-related pattern to
the data of 14 control subjects that were scanned while
performing the DMS task 48 h apart without undergoing
sleep deprivation, and did not find any systematic ncrease

2 We also applied Ordinal Trend Analysis to the data from all probe
phases (1, 3 and 6) on day | in order to identify an activation pattern whose
subject expression increases as a function of memory load. We failed to find
such a pattern (best-fit: expression of PC -4 vields an activation pattern
with five exceptions, p=0.39), indicating that a load modulation tn
activation does not contribute enough variance to be detected n a
covariance decomposition of the data from our subject sample. |

3 We also subjected the data from stimulus and retention phase for six
memorized items to an Ordinal Trend analysis, similarly to the treatment of
the data from the probe phase, but we did not yield a signilicant cffect of
sleep deprivation that correlated with any of the behavioral mcasures. |
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or decrease in pattern expression from scan 1 to scan 2 for subjects on day 1 vs. controls on day 2: p=0.73; p levels
" the control subjects, thus ruling out that order cffects gave from two-tailed ¢ tests.). |
risc to the activation pattem in the first place. Furthermore, Brain regions that concomitantly decreased in activation
the subject expression of the sleep-deprivation pattern docs (as ascertained by the bootstrap test) for the majority of
not differ significantly between the groups in the well-rested subjects as a function of sleep deprivation were found
state, (subjects on day | vs. controls on day 1: p=0.95, mainly in posterior areas, particularly visual association
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Fig. 3. (Upper half) Axial, coronal and sagittal glass-brain projections of brain regions that have positive weights in the activation pattern, i.e.. whose associated
activation decreases for most subjects. from PRE to POST. The threshold of the ICV statistic was >3.5. (Lower half) Surface-rendered projections of the regions

displayed in the glass-brain projections.
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(ventral stream) areas and parictal areas (BA 7 and BA We then tested whether individuals®™ pattern expression
40). Brain rcgions that concomitantly increased in activa- correlated with individual’s behavioral performance and
tion for the majority of subjects werce found in the antertor found that thc deccrease in expression as a result of sleep
cingulate gyrus (BA 32), thalamus and basal gangla as deprivatioh' was significant in predicting the drop in recog-
well the anterior lobe of the cercbellum (Figs. 3 and 4; nition accuracy (R*=0.27, p<0.05) from day 1 to day 2

Tables 1 and 2). ’ S (Fig. 5).
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Fig. 4. (Upper half) Axial, coronal and sagittal glass-brain projections of bramn regions that have negative weights in the activation pattern. i.c., whose
associated activation increases for most subjects from PRE to POST. The threshold of ICV statistic was < — 3.5. (Lower half) Surface-rendered projections of
the regions displayed in the glass-brain projcctions. |
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Table |

Talairach locations of brain regions with significant de-activation from PRE
to POST as ascertained by a bootstrap resampling test (ICV>3.5) (Talairach

Daemon Client 1.1, Research Imaging Center, University of Texas Health _' |

Science Center at San Antonio)

‘Table 2

Talairach locations of arcas with significant activation from PRE to POST
as ascertained by a bootstrap resampling test (ICV < —3.35)

X Y VA

A Y Z
14 - 62 10 Postenor Cingulate Gray Matter  Brodmann
| o ~area 30
- 55 - 5% 12 Middie Temporal Gray Matter  Brodmann
CGyrus area 39
—-40 =77 i3 Middle Occipital Gray Matter  Brodmann
| -~ Qyrus ~ area 19
2 - 13 56 Medial Frontal * *
Gyrus
-59 -34 26 Inferior Parietal Gray Matter  Brodmann
Lobule arca 40
-51  -30 22 Inferior Paretal Gray Matter - Brodmann
Lobule ~area 40
43 ~ 68 7 Middlc Occipital * *
| Gyrus
50 — 56 16  Superior Temporal Gray Matter  Brodimann
- - Gyrus area 22
46 -5 48  Precentral Gyrus Gray Matter  Brodmann
- area 6
10 —48 38  Precuneus Gray Matter  Brodminn
| area 7
4 -~ 42 48  Precuneus * *
4() —80 -3 Inferior Occipital Gray Matter  Brodmann
Gyrus | ~area 19
—34 =83 8 Middle Occipital Gray Matter  Brodmann
Gyrus area 19
-5 -62 -2 Iaferior Temporal Gray Matter . Brodmann
- Gyrus carea 19
33 ~ 66 9 Middle Temporal Gray Matter  Brodmann
Gyrus arca 37
16 - 48 4  Parahippocampal Gray Matter  Brodmann
. : CGyrus | arca 30
-~ 42 4] 9 Inferior Frontal Gray Matter  Brodmann
Gyrus arca 46
32 — 89 4  Middle Occipital Gray Matter  Brodmann
Gyrus area |8
8 — 78 35 Cuneus Gray Matter  Brodmann
| ‘area 19
59 - 20 29 Postcentral Gyrus ~ Gray Matter  Brodmann
| area 2
-4 — 52 50  Precuneus ¥ ¥
Ny - 21 12 © Transverse Temporal  Gray Matter  Brodmann
- Gyrus arca 41
— 44 50 -1 Middle Frontal Gray Matter  Brodimann
Gyrus | arca 10
6 6 37  Cingulate Gyrus Gray Maiter  Brodmann
| | | | arca 24
- 48 17 38  Middle Frontal Gray Matter  Brodimann
CGyrus area 8

White matter locations have been removed.

Furthermore, the decrease in the activation pattern’s
expression predicted the increase in intra-individual reac-

tion variabtlity from PRE to P

(Fi1g. 6).
The drop in recognition accuracy and the increase in
intra-individual reaction time variability were correlated

(R*=0.31, p<0.05). When the influence of the recogni-

OST (R"=0.59, p<0.0005)

- 20

White matter locations have been removed.

14 7 18 Caudate ~ Gray Matter  Caudate
|  Body
16 - 13 12 Thalamus Gray Matter  Ventral
Lateral
Nucleus
- 14 13 8 Thalamus (Gray Matter ~ Ventral
| | [Lateral
| Nucleus
10 -9 15 Thalamus (Gray Matter  Anterior
| Nucleus
30 —36 —25 Culmen * | *
~40 ~32 —20 Parahippocampal  Gray Matter Brodmann
Gyrus area 36
4 7 —15 Medial Frontal * >
| Gyrus
—4 23 30 Cingulate Gyrus Gray Matter  Brodimann
| area 32
21 27 Cingulate Gyrus ¥ *
2 22 52 Superior Frontal Gray Matter  Brodmann
‘ Gyrus o area 8
— 8 8 1 Caudate Gray Matter  Caudate
| Head
— 4 ~66. =3 Culmen ¥ *
42 — 54 —28 Tuber * *
24 48 20  Superior Frontal ~ Gray Matter Brodmann
| Gyrus area 10
12 40 18 Medial Frontal Gray Matter  Brodmann
~ Gyrus area 9
—~48 —54 —23 Tuber ¥ *
~24 —65 =25 Uvula * *
24 —69 —27 Pyramis ¥ ¥
14 -69 -25 Uvula ¥ *
22 —77 =25 Uvula ¥ -
32 - 14 16  Parahippocampal Gray Matter  Hippocampus
- Qiyrus -
63 — 55 _ 2 Middle Temporal  Gray Matter  Brodmann
Gyrus o area 37
24 12 1 Lentiformy Nucleus Gray Matter  Putamen
2 — 52 — 1 Culmen * *
12 —50 =33 Cerebellar Tonsil * *
- 22 10 —4 Lentiform Nucleus Gray Matter  Putamen
24 ~32 —12 Parahippocampal Gray Maiter  Brodimann
Gyrus area 36
57 —53 — 18 Fusttorm Gyrus Gray Matter  Brodimann
| | ) arca 37
-46 —-48 —-23 Culmen * *
~10 -73 =27 Pyramis * -
- 42 48 48 Inferior Parictal - Gray Matter  Brodmann
| Lobule arca 40
i0 —~64 —27 Uvula * o
~65 34 10 Middle Temporal  Gray Matter Brodmann
| (Gryrus area 21
-24 —-44 -18 Culmen * x
—-48 —58 =24 Tuber * *
12 51  Superior Frontal Gray Matter  Brodmann
Gyrus ‘area 6
=28 =81 =23 Uvula * *
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Fig. 5. Brain-behavior cormrelation of pattermn expression and worsening
recognition accuracy due to sleep deprivation. The bigger the subjects’
decrease of their pattern expression, the worse their drop in recognition
accuracy (R™=0.27, p<0.035).

tion accuracy drop was removed from the increase in
intra-individual reaction time vanability, the correlation
with the change in the covariance pattern’s expression
from PRE to POST was reduced, but still significant with
the same sign of the correlation as before (R*=0.33,
p <0.03). |

The decrease in pattern expression from PRE to POST

also correlated significantly with the increasce in the numbcr
of non-responscs from PRE to POST (R°=0.45, p<0.005,

figurc not shown). That is, the expression of the covariance
pattern during the epochs in which subjects made responses

could predict the global rate of non-responses. This corre-
lation though became non-signtficant when the influence of

the increase in reaction time varlablhty was partialled out
from the increase in lapses.

An additional observation about the correlatmn between
changes mn behavioral performance variables and pattern
expression 1s that this correlation 1s mainly driven by the
POST condition. Pattern expression during POST correlates
with behavioral performance during POST for two of the
three behavioral variables (recognition accuracy: R*=0.18,
p=0.08; STD RT6: R>=0.50, p<0.001; non-response ratc;

R==0.44, p<0.005). Higher subject expression of the sleep-.

deprivation pattern during POST implies better perfor-
mance, consistent with the earlier observation that the more
subjects decrease their pattern expression from PRE to
POST, the worse their performance decrement. During
PRE, subject expression of the sleep-deprivation pattern
did not bear any relationship to performance.

Although the decrease in expression of the activation

pattern did not correlate with the decrease in (within-sub-
jects) mean reaction times as a result of sleep deprivation,
these brain-behavior correlations provide additional confir-
mation of having established a true neural correlate of sleep

deprivation and its effects on cognitive performance. Indi-
vidual decreases in subject expression of the activation
pattern could thus predict the degree to which recognition
accuracy worsened as well as the degree to which intra-
individual rcaction time variability increased. It could not
predict the degree to which subjects slowed down as a result
of sleep deprivation. Further, the degree of slowing could
not be predicted well by a combined expiession of the more
inclusive set of the first six principal components in a linear
regression (R~ =0.15),"demonstrating that if a neural corre-
late of slowing exists and contributes enough variance to be
captured by a PCA, it will probably be tound during the
retention or stimulus phase (to be described 1n a future
report). |

Activation patterns resulting from a multivariate analysis
of one data set can be applied prospectively to different data

“sets in order to prove or disprove the patterns’ utility in

accounting for experimental variables with its subject ex-
pression. We decided to exploit this feature and apply the
sleep deprivation pattern to the data from the probe phases
for one and three stimulus items. Pattern expression still
showed a decrease from PRE to POST for the majority of

subjects with three exceptions tor both stimulus array sizes

of 1 and 3 (p<0.01). For the array size of 1, decrease in
pattern expression still correlated with the mcrease n intra-
individual reaction time variability (R*=0.34, p <0.05): for

array size 3, decrease in pattern expression still correlated

with a decrease in recognition accuracy (R*=0.24, p<0.05)
(graphs not shown) (Fig. 7).

The preserved rclationship between (,hanﬂc in pdttcm
expression and sleep deprivation for all stimulus array sizes
suggests the absence of any interaction between the effects
of memory load and sleep _deprivation.' For further substan-
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Fig. 6. Brain-behavior correlation of pattern expression and increased
intra-individual reaction time variability due to sleep deprivation. The
bigger the subjects’ decrease of their pattern expression. the larger their
increase in reaction time variability as measured by the within-subjects
standard deviation (R”=0.59, p<0.0005).



C. Habeck et al. / Cognitive Brain Research 18 (2004) 306-321 317

4

c 2F

O |

A of

Q

o |

% =2}

QO

3

o 4

S

m '6
-8
4

 Subject expression
R

_4
C
ol
8 - . ,
1 3 6
 Array size

Array size

Fig. 7. Prospective application of the sleep deprivation patterm obtained from the probe phase with six items to subject data from probe phases for one and three
items. (A) Subject expression of the sleep deprivation pattern for the nrobe phase with one stimulus item; 13 of 18 subjects decrease their subject expression of
the forwardly applied pattem (p <0.01) from PRE to POST: (B} subject expression of the sleep deprivation pattern for the probe phase with three stimulus
items; 15 of 18 subjects decrease their expression of the forwardly applied pattern ( p<0.01) from PRE to POST. (C} Plot of the of subject expression of the |

sleep deprivation pattern for all probe phases on day I of the study, prior to sleep
behavior, expression values at the three different stimulus size levels were connect
deprivation pattern for all probe phases on day 2 of the study, after to sleep depriv

effect of sleep deprivation and memory load, but no interaction.

tiation. we forward-applied the previously derived sleep
deprivation pattern to the probe phase data. The resulting
values represent the degree to which the sleep-deprivation
pattern was expressed in each subject in each set-size
condition both on day | and day 2. These values were into
a two-way ANOVA that contained sleep deprivation status,
" memory load and an interaction term as factors, similarly to
our analyses in the Behavioral Performance. Similarly to the
behavioral variables, we found an effect of sleep deprivation
(F(1,17)=21.24, p<0.0001) and an effect of memory load
(F(2,34)=4.66, p<0.05), but no interaction (F(2,34)=
3.13, p=0.07). | '

The regions involved 1n the obtained activation pattcmn

point to involvement of a spatial attentional nctwork (frontal

and parictal regions) as well as early perceptual processing
(occipital regions; cf. Ref. [28]). We also applied the
activation pattern to the data from the stimulus phase for
six items of the DMS task. The PRE-POST difference in
subject expression of the pattern in this phase of the task
also displays a significant correlation with behavior that was
observed during the probe phase. The decrease In expres-
sion correlates significantly with the increase in reaction

time variability (R°=0.40, p<0.005), the increase in the

non-response rate (R*=0.33, p<0.05), and marginally with
the decrease in recognition accuracy (R"=0.18, p=0.08).

deprivation, as a function stimulus array size: To illustrate the within-subjects
ed by a line for each subject. (D) Plot of the of subject expression of the sieep
ation, as a function stimulus array size. In a two-way ANOVA, there was an

L

The PRE~POST differences in pattern expression in the two
task phascs are also strongly related to cach other (R*=0.56,

- p <0.0005).

Forward application to the data from the retention phase

is also possible, albeit not plausible on account of the

different cognitive mechanisms operational during that
phase. For completeness, we decided to-apply the pattern
to the data from this phase also, but predictably did not
achieve any correlation between subject expression and any
of the behavioral measures.

4. Discussion

We successfully identified a slcep-dcprivation-rclated
activation pattern in the probe data from a delayed-match-
to-sample task. Subject expression of this activation pattern
decreased as a function of sleep deprivation for 17 out of 13

subjects (p <0.001), and correlated significantly with per-

formance measures that were degraded by sleep deprivation.
That is, the more subjects decreased their expression of this
pattern, the worse their recognition accuracy became, the
more their number missed responses increased, and the

" more their intra-individual variability in reaction time in-

creased as a function of sleep deprivation.
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Brain regions in this pattern whose associated activation
decreased through the course of sleep deprivation were
mainly found in thc arcas of the “ventral” and “dorsal
stream” of carly visual processing system. i.c., occipital and
~ temporal regions (BA 18, 19, 37, 38, 39) as well as parictal
regions (BA 40). Some of these brain regions were identi-
~fied in previous cognitive neuroimaging experiments in-
volving visual memory and novelty processing tasks of
objects’ features and imagery [9.11,1 8,34,36,40]. Activation
in these areas and the precuneus (BA 7) and the inferior
parictal lobule (BA 40), areas associated with dorsal stream
activity previously identified in processing object location
(5,7.8], decreased as a function of sleep deprivation for the
majority of subjects in our experiment. These results suggest
that sleep deprivation may affect the retrieval of previously
encoded objects by disrupting perceptual processing when
comparing the probe to the remembered items. Most sub-
jects cannot sustain activation in. these brain regions after
sleep deprivation, and consequently their performance suf-
fers. (Involvement of pre-frontal and frontal brain regions
was limited, although present in BA 6, §, 10 and 46, and ts
discussed below.) _
~ Regions whose associated activation increased as a
function of sleep deprivation were found mainly in the
basal ganglia (caudate head, putamen) and thalamus as well
“as the anterior cingulate gyrus (BA 32) and the right

superior and medial frontal gyri (BA 9, 10). Activation of

these regions in concert, resulting in high covariance, 18
plausible on the basis of their anatomical connectivity that
“has been investigated in macaque monkeys through ana-
tomical tract-tracer studies [31]. The basal ganglia project
to a variety or motor and pre-motor brain regions via

thalamic relay nuclei. The ventral—anterior nucleus projects

to anterior cingulate gyrus, consistent with our finding.
Several neuroimaging and computational modeling studies
have elucidated this region’s involvement in evaluative
processes like monitoring response conflict, e.g., Refs.
14,6,29]. affording the possible interpretation that sleep
deprivation causes increased moniforing demand in the
selection of the appropriate response to the probe letter
on display. |
As concerns the PFC, we noted activation with small
spatial extent that passcd the bootstrap threshold criterton.
 Bilateral regions in dorsal PFC (inferior frontal gyri; BA 46)
showed a sleep-deprivation-related de-activation that was
predictive of worsening recognition performance. This find-
ing is consistent with recent event-related studies of the
DMS task [39,42], which ascribed modulation by memory
load and task pertormance (recognition accuracy) to the
activation in dorsal PFC during the probe phase. We can
therefore refine the statement of the independence between
the experimental factors sleep deprivation and memory load:
They might give rise to different activation patterns whose
subject expression values are dissociated from each other,
yet, individual brain regions can be influenced by both
simultancously in a non-interactive manner. Thus, activation

in dorsal PFC is increased by increasing memory load, but
decreased by sleep deprivation.
~ To our knowledge, multivariate tcchniques have so far
not been applicd to sleep deprivation and only rarely been
applicd to working memory tasks 121,33]. These studics
investigated the effects of the delay between encoding and
retrieval as well as subjects’ age differences on the
ongoing activity during the delay period in a face-match-
ing task. Path analyses quantified the strength of interac-.
tion between different key brain areas as a function of the
length of the delay period. However, because of their
different design goals compared with our study, 1t 18
difficult to see exactly how their findings would inform
the analysis in this paper. |

The regions found to de-activate 1 our event-related
fMRI study are broadly in linc with regions that showed
decreased glucose metabolism in an F DG-PET study [45]
and an earlier IMRI study [14] that both contrasted neural
performance on a serial addition/subtraction task before and
after 24 and 35 h of slecp deprivation, respectively. Alert-
ness and cognitive performance declined with de-activation
in pre-frontal, parietal and thalamic regions. B

Some of the regions showing increased activation as a
result of sleep deprivation have also been identified 1n other
studies: [n a study of 24 h of sleep deprivation involving an

attention task [38], the ventrolateral thalamus was also -

found to display increased activation, as was the anterior
cingulate in a study of 35 h ot sieep deprivation involving
an fMRI dual-task study of verbal learning and scrial
subtraction task [16]. The latter activation was also inter-
preted as arising from the increascd need- for monitoring
response conflicts in the sleep-deprived state, similarly to
our suggestion above. o

On the other hand, the above dual-task study [16} as well
an fMRI study by the same authors dealing with 35 h ot
sleep deprivation and a verbal leaming task [15] found
increased activation in the major regions of the frontal and
parietal lobes that were decreasing in activation in the
current report. This discrepancy shows the need for further
investigation. A possible explanation is that the increased
activation in the areas reported by these two studies after 35
h of sustained wakefulness cannot persist for 48 h, and
reverses its sign relative to the baschne. It is worth consid-
ering, though, that in addition to the degrec of sleep
deprivation, our study differed from these studies on two
more counts: (1) the task: a DMS-task with single letters vs.
a verbal learning task using words, (2) the data analysis:
multivariate vs. univariate analysis. Factor (1) could plau-
sibly bring about a difference in the behavior of the
prefrontal cortex. Factor (2) could also resuit in the differ-
ences observed: Our analysis identifies frontal and parietal
regions in the context of a covariance pattern. [n these areas,.
there could be increasing activation in response to sleep
deprivation that is not accounted for by the covariance
pattern (because of a lack of sufficient variance in the
principal componcnts analysis), while the modulation of
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the covariance pattem might dictate de-activation for these
arcas. | ' _

Regardless of the precisc mechanisims, it secems likely
that the different nature of the tasks used in our and the
other recent MRI studies of sleep deprivation {14--16,45]
accounts for some of the different behavior observed in
frontal and parietal regions. Studies [14-16] all used 35
h of sleep deprivation, but employed arithmetic, verbal
learning and a dual-task situation involving both, to obtain
changes in activation of both positive and negative signs.
Studies {14,45] on the other hand used similar arithmetic
tasks. but different amounts of sleep deprivation, and
arrived at similar changes in activation, regardless of
potential circadian confounds [2,3,35] hampering the
cross-study comparson. |

[n addition to a broad characterization of the cognitive
proccsses contributing to the obtained sleep-deprivation
pattern, we can speculate about which specific processes
underlie our results. Expression of the sleep deprivation
pattern during the probe phase was independent'of the size
of the stimulus array, which is consistent with the hypothesis

that sleep deprivation does not affect memory scanning.

Regardless of the number of items subject had to keep in
mind, sleep deprivation caused the same noticeable decrease
in the expression of the activation pattern. Likewise, re-
gardless of whether subjects were sleep deprived or not
when they performed the task, the activation pattern failed
to evidence any modulation by memory load in its subject
cxpression. |

(n addition to memory scanning, the DMS task probe
phase requires binary decision, responsc selection and motor
execution processes. If the binary decision process Were

impacted by sleep deprivation, one would expect the inter-

" action between sleep deprivation status and probe type (true
positive/true negative) to aftect MR signal pattern expres-
sion in a two-factorial design. We did not have enough data
to facilitate such an analysis, and can therefore neither
confirm nor rule out that the binary decision process is
affected by sleep deprivation. Extending this logic, we
cannot infer anything about sleep-deprivation effects on
response selection because this experiment contained no
explicit manipulation that could interact with slecp depri-
vation to affect pattern expression. However, as noted
above, involvement of the basal ganglia structures may in
fact suggest changes to responsc sclection. Wc can infer that
the obtained sleep-deprivation-related activation pattern
does not reflect changes to the motor execution processes
due to the lack of correlation between pattern expression
and the mean RT.

Our findings can be situated in a broader context of the
effects of sleep deprivation that have been established in the
sleep-deprivation literature. A thorough review articie [13]

conceptualized sleep deprivation as consisting of five major.

effects that might all be present to varying degrees: (1)
cognitive slowing, (2) optimuin response shifts, (3) lapsing,
(4) memory decrements and (5) vigilance decrements (time-

on-task effects). We can relate our results to some of these
aspects. |

Although we obscrved general cognitive slowing behav-
jorally (independent of memory scanning) in our cxperi-
ment, we failed to locate any neural correlates in the major
principal components of our analysis. Apparently, these
offects do not contribute enough variance and are supersed-
ed by the other effects in the list. Based on the overall
slowing of reaction time evident in our behavioral data, we
might expect that shitts occurred 1n optimal responses as
well. However, our data set was too small to analyze

“optimum response shifts since such an analysis requires a

further subdivision of the data. |

Lapsing accounted for a large part of our effects since
expression of our covariance pattern correlates with the rate
of non-responses and the reaction time variability in linc
with the above-mentioned review [13], which identified
lapsing as a main cause of increased reaction time variabil-
ity. This is also the likely cause of the colinearity between
the rate of non-responses and reaction time variability
shown in the Results.

With respect to memory decrements, our behavioral as
well as neuroimaging results did not indicate that memory
scanning per se was affected by sleep deprivation. However,
sleep deprivation caused a decrease in overall performance
accuracy that was correlated with network expression,
directly implicating memory processing in general as a
source of sleep-deprivation-related performance decrements.

Vigilance decrements due to sleep deprivation usually
become apparent over the course of extended bchavioral
testing. Our bchavioral task consisted of threc  10-min
blocks. We cannot examine vigilance decrements within
blocks because of our randomized trial design. However, we
can examine vigilance decrements across the three blocks.
To test this possibtlity, our behavioral variables were sub-
jected to a three-way ANOVA in which the block number,
set size and the sleep deprivation status are entered as
factors. We did not find any main effect of block number
or interactions between block number (time-on-session) and
sleep deprivation status ftor any of the variables. This
- dicates that reduced expression of the activation pattemn
after sleep deprivation is not duc to reduced performance or
attention to the task across the testing session. However, the
possibility remains that vigilance decrements within a block
(time-on-block) can partially account for the observed
effects. |

Despite this absence of time-on-task vigilance effects, the
regions involved in the obtained activation pattern point to
involvement of a spatial attentional network (frontal and

parietal regions) as well as early perceptual processing

(occipital regions; cf. Ref. (281). Both spatial attention and
early visual processing are important components of the
stimulus phase of the task trials as well as the probe phase
from which our activation pattern was obtained. To test this
possibility, we applied the probe-period activation pattern to
the data from the stimulus phase for six items of the DMS
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task. The PRE-POST difference in subject expression' of

the pattern in this phasc of the task displays nearly the same

corrclation with bechavior that was observed during the
probe phasc. The decrease in expression correlates signifi-
cantly with the increase in reaction time variability and the
non-response rate. The PRE-POST differences in pattern
“expression in the two task phases are also strongly related to

each other. This finding supports the notion that the some |

cognitive operations reflected in the probe-period activation
pattern are also present in the stimulus phase, and that the
neural activation pattern obtained during probe 1s sufficient,
but not necessary, to account for some of the behavioral
decrements. ' _

In summary, we established a robust neural correlate ot
sleep deprivation during the probe phase of a DMS task.
Expression of the identified pattern was independent of
memory load, and accounted for worsening task perfor-
mance as reflected by decreased recognition accuracy,
increased non-response rate and increased intra-individual
reaction time variability. The pattern we obtained did not
account for the observed slowing in reaction time. We
suggest that this pattern reflects changes to spatial attention
and early visual processing induced by sleep deprivation
based on an application of the probe-period pattern to the
stimulus phase. There was no evidence that memory scan-

ning was related to the activation pattern based on a lack of

change in expression of the pattern when applied to other
set-size conditions. The activation pattern is also unlikely to
be related to motor exceution since it did not correlate with

reaction time. Finally, there is insufficient evidence to accept

or reject the notion that the activation pattemn is related to
binary decision.
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